
International Journal of Theoretical Physics, Vol. 43, No. 11, November 2004 ( C© 2004)

Unital Groups and General Comparability Property

Anatolij Dvurečenskij1

Pseudo-effect algebras are partial algebras (E ; +, 0, 1) with a partially defined addi-
tion + which is not necessarily commutative and therefore with two complements, left
and right. If they satisfy a special kind of the Riesz decomposition property, they are
intervals in unital po-groups. The general comparability property in unital po-groups
with strong unit (G, u), allows to compare elements of G in some intervals with Boolean
ends. Such a po-group is always an �-group admitting a state. We prove that every such
(G, u) is a subdirect product of linearly ordered unital po-groups.
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subdirect product.
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1. INTRODUCTION

The Abelian po-group B(H ), the system of all Hermitian operators of a
Hilbert space H , plays an important role in orthodox quantum mechanics and in
its axiomatization. The identity operator I of H is a strong unit of the po-group
B(H ), and the interval E(H ) := {A ∈ B(H ) : 0 ≤ A ≤ I } forms a most important
example of effect algebras (Dvurečenskij and Pulmannová, 2000). Effect algebras
were introduced in the 1990s by Foulis and Bennett (1994) as a +-counterpart of
D-posets introduced by Kôpka and Chovanec (1994). Some effect algebras have an
intimate connection with unital po-groups as an interval whenever they satisfy the
Riesz decomposition property. Such a property is an analogue of the distributivity,
however, B(H ) does not have the Riesz decomposition property.

Foulis (preprint, 2003, in press) studied compressions and compressible
Abelian groups as well as compressible groups with two special kinds of gen-
eral comparability. Such groups contain B(H ).

Recently, pseudo-effect algebras were introduced by me and Vetterlein
(Dvurečenskij and Vetterlein, 2001a,b). They are also intervals in (non-
commutative) unital po-groups when they satisfy a generalized form of the Riesz
decomposition property (Dvurečenskij and Vetterlein, 2001b).
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In the present paper, we study the general comparability property in unital
po-groups which are not necessary commutative. Such groups admit to compare
arbitrary, two elements in special intervals with Boolean ends. We show that general
comparability entails that the group with the property is an �-group, which is a
subdirect product of linearly ordered po-groups. In addition, it admits a state.

2. PSEUDO-EFFECT ALGEBRAS AND UNIGROUPS

According to Dvurečenskij and Vetterlein (2001a,b), a partial algebra
(E ; +, 0, 1), where + is a partial binary operation and 0 and 1 are constants,
is called a pseudo-effect algebra if, for all a, b, c ∈ E , the following holds:

(i) a + b and (a + b) + c exist if, and only if, b + c and a + (b + c) exist,
and in this case (a + b) + c = a + (b + c);

(ii) there is exactly one d ∈ E and exactly one e ∈ E such that a + d =
e + a = 1;

(iii) if a + b exists, there are elements d , e ∈ E such that a + b = d + a =
b + e;

(iv) if 1 + a or a + 1 exists, then a = 0.

If we define a ≤ b if, and only if, there exists an element c ∈ E such that
a + c = b, then ≤ is a partial ordering on E such that 0 ≤ a ≤ 1 for any a ∈ E .
It is possible to show that a ≤ b if, and only if, b = a + c = d + a for some
c, d ∈ E . We write c = a/b and d = b \ a.

Pseudo MV-algebras are lattice pseudo-effect algebras such that (a \ (a ∧
b) = (a ∨ b) \ b holds for all a, b.

An element u ∈ G+ is said to be (i) a strong unit if given an element g ∈ G,
there is an integer n ≥ 1 such that g ≤ nu, (ii) generative if given an element
g ∈ G+, there are elements e1, . . . , en ∈ E := �(G, u) := {g ∈ G : 0 ≤ g ≤ u}
such that g = e1 + · · · + en . A unital po-group is a couple (G, u), where G is a
po-group with strong unit u. For example, if Abelian (G, u) satisfies the Riesz
interpolation property, then u is generative.

We recall that �(G, u) is a pseudo-effect algebra. Dvurečenskij and Vetterlein
(2001a) and Dvurečenskij (2003) proved that if a pseudo-effect alegbra E satisfies
a special kind of the Riesz decomposition property, then E is isomorphic with
�(G, u) for some unital po-group (G, u).

Let E be a pseudo-effect algebra. A mapping ψ : E → K , where K is a
group, is said to be a K -valued measure if a, b ∈ E , a + b ∈ E imply ψ(a + b) =
ψ(a) + ψ(b).

A unital po-group (G, u) is said to be a unigroup if, for any group K and any K -
valued measure ψ : �(G, u) → K , ψ can be extended to a group homomorphism
ψ̂ : G → K ; we recall that this extension is unique.
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For example, if (G, u) satisfies (RDP), then (G, u) is a unigroup (Dvurečenskij
and Vetterlein, 2001a,b) and u is generative. Similarly, if (G, u) is an interpo-
lation Abelian po-group, then (G, u) is a unigroup (Ravindran, 1996). In par-
ticular, if (G, u) is a unital �-group, then (G, u) is a unigroup (Dvurečenskij,
2003).

If B(H ) is the system of all Hermitian operators on a Hilbert space H , then
(B(H ), I ) is a unigroup, I is generative and B(H ) is not an interpolation group,
where I is the identity operator (Foulis, preprint). We recall that owing to Kadison’s
theorem, B(H ) is an antilattice, that is, only comparable elements in B(H ) have
joins and meets (Luxemburg and Zaanen, 1971).

More general, ifA is a von Neumann algebra of operators acting in a complex
Hilbert space H and if B(A) is the system of all Hermitian operators in A, then
(B(A), I ) is a unigroup (Foulis, preprint).

3. CENTRAL ELEMENTS, GENERAL COMPARABILITY,
AND UNIGROUPS

An element e of a pseudo-effect algebra E is said to be central (or Boolean)
if there exists an isomorphism

fe : E → [0, e] × [0, e∼] (1)

such that fe(e) = (e, 0) and if fe(x) = (x1, x2), then x = x1 + x2 for any
x ∈ E .

We denote by C(E) the set of all central elements of E , and C(E) is said to be
the center of E . We recall that 0, 1 ∈ C(E); in addition (Dvurečenskij, 2003), (i) if
e ∈ C(E), then e∼ = e−, we denote e′ = e∼; (ii) C(E) = (C(E); ∨, ∧, ′ , 0, 1) is
a Boolean algebra; (iii) if x ∈ E and e ∈ C(E), then x ∧ e ∈ E ; (iv) if {ei }n

i=1 is a
finite system of central elements of E such that ei ∧ e j = 0 for i �= j and e1 ∨ · · · ∨
en = 1, then for any x ∈ E , x = x ∧ e1 + · · · + x ∧ en; (v) if E is with (RDP), then
e ∈ C(E) iff e ∧ e∼ = 0, or equivalently, iff e ∧ e− = 0, and (vi) the mappings pe :
E → [0, e] and pe′ : E → [0, e′] defined by pe(x) = e ∧ x , and pe′ (x) = x ∧ e′,
x ∈ E , are surjective homomorphisms such that fe(x) = [pe(x), pe′ (x)] for any
x ∈ E .

Suppose that E = �(G, u) and (G, u) is a unigroup. Since each mapping pe :
E → [0, e] ⊆ G (e ∈ C(E)) is a homomorphism, it is also a G-valued measure.
Therefore, pe can be extended to a (unique) group homomorphism, p̂e, from G
into G. We recall that (i) p̂e(x) ≥ 0 for any x ∈ G+, (ii) p̂e(x) ≤ p̂e(y) if x ≤ y,
(iii) p̂e ◦ p̂e = p̂e.

Let (G, u) be a unital po-group. For any element e ∈ G+, we denote by G(e)
the directed convex subgroup of G generated by e. Then, G(e) = ⋃

n{g ∈ G :
−ne ≤ g ≤ ne}.
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Proposition 3.1. Let (G, u) be a unigroup with generative u and let e be a central
element of E = �(G, u).

(i) p̂e(x) + p̂e′ (x) = x = p̂e′ (x) + p̂e(x) for any x ∈ G.
(ii) If x ∈ G+ and x ≤ nu for some integer n ≥ 1, then p̂e(x) = ne ∧ x.

(iii) ne ∧ ne′ = 0 for any n ≥ 1.
(iv) p̂e ◦ p̂e′ = 0 = p̂e′ ◦ p̂e.
(v) p̂e(G) = G(e) and p̂e′ (G) = G(e′) are po-groups with strong unit e and

e′, respectively, and G = p̂e(G) ⊕ p̂e′ (G).
(vi) The mapping fe : G → G(e) × G(e′) given by fe(x) = ( p̂e(x), p̂e′ (x)),

x ∈ G, is a po-group isomorphism such that (a) fe(e) = (e, 0), (b)
fe(u) = (e, e∼), and (c) if fe(x) = (x1, x2), then x = x1 + x2, x ∈ G.

Proof:

(i) If x ∈ G+, then x = x1 + · · · + xn where x1, . . . , xn ∈ E . Then p̂e(x) +
p̂e′ (x) = x1 ∧ e + · · · + xn ∧ e + x1 ∧ e′ + · · · + xn ∧ e′ = x1 ∧ e +
x1 ∧ e′ + x2 ∧ e + · · · + xn ∧ e + x2 ∧ e′ + · · · + xn ∧ e′ = · · · = x1 ∧
e + x1 ∧ e′ + · · · + xn ∧ e + xn ∧ e′ = x1 + · · · + xn = xn = p̂e′ (x) +
p̂e(x). The general case is now clear.

(ii) Assume 0 ≤ x ≤ nu. Then p̂e(x) ≤ p̂e(nu) = npe(u) = ne. In addition,
the monotonicity of p̂e′ implies 0 ≤ p̂e′ (x) = x − p̂e(x) which gives
p̂e(x) ≤ x . Let y ∈ G with y ≤ x and y ≤ ne be given. Then p̂e(y) ≤
p̂e(x) and y − p̂e(y) = p̂e′ (y) ≤ p̂e′ (ne) = 0, i.e., y ≤ p̂e(y) ≤ p̂e(x)
which yields p̂e(x) = x ∧ ne.

(iii) According to (ii), we have ne ∧ ne′ = p̂e′ (ne) = n p̂e′ (e) = 0.
(iv) Let x = x1 + · · · + xn , x1, . . . , xn ∈ E . Then we have p̂e( p̂e′ (x)) =∑n

i=1 p̂e( p̂e′(xi )) = 0.
If x = x+ − x−, where x+, x− ∈ G+, then p̂e( p̂e′ (x)) = p̂e( p̂e′ (x+)) −
p̂e( p̂e′ (x−)) = 0.

(v If x ∈ p̂e(G) ∩ p̂e′ (G), then x = p̂e(x1) = p̂e′ (x2) for some x1, x2 ∈ G.
Therefore, x = p̂e(x) + p̂e′ (x) = p̂e( p̂e′ (x2)) + p̂e′ ( p̂e(x1)) = 0. In ad-
dition, from the construction of G(e) and G(e′), we have that p̂e and p̂e′

map G onto G(e) and G(e′), respectively.
(vi) Suppose fe(x) ≤ fe(y). Then by (i), x = p̂e(x) + p̂e′ (x) ≤ p̂e(y) +

p̂e′ (y) = y, which proves that fe is a po-group isomorphism of G and
G(e) × G(e′). �

We say that a pseudo-effect algebra E satisfies general comparability if,
given x , y ∈ E , there is a central element e ∈ E such that pe(x) ≤ pe(y) and
pe′ (x) ≥ pe′ (y). This means that the coordinates of the elements x =
(pe(x), pe′ (x)) and y = (pe(y), pe′ (y)) can be compared in [0, e] and [0, e′],
respectively.
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For example, (i) every linearly ordered pseudo-effect algebra trivially sat-
isfies general comparability; (ii) also any Cartesian product of linearly ordered
pseudo-effect algebras; (iii) every σ -complete pseudo MV-algebra satisfies gen-
eral comparability (Dvurečenskij, in press, Proposition 4.1).

We say that a unigroup (G, u) satisfies general comparability if, given x , y ∈
G, there is a central element e ∈ E such that p̂e(x) ≤ p̂e(y) and p̂e′ (x) ≥ p̂e′ (y).

It is clear that if (G, u) satisfies general comparability, it satisfies E = �(G, u).
If (G, u) is an �-group, the both notions are equivalent as shown by Jakubı́k (2002).
In what follows, we show that general comparability in E and in the corresponding
unigroup (G, u) are equivalent.

Theorem 3.2. Let (G, u) be a unigroup and let E = �(G, u). Then E satisfies
general comparability, if and only if (G, u) satisfies general comparability. In such
case, E is a pseudo MV-algebra and G is an �-group.

Proof: Let E satisfy general comparability. In the following steps, we prove that
E is a lattice which is in fact a pseudo MV-algebra. Let x , y ∈ E and let e ∈ C(E)
such that pe(x) ≤ pe(y) and pe′ (x) ≥ pe′ (y). Then x = pe(x) + pe′ (x) ≥ pe(x) +
pe′ (y) =: v ∈ E .

Claim 1. v = x ∧ y. We have y = pe(y) + pe′ (y) ≥ pe(x) + pe′ (y) = v , that
is, v ≤ x , y. Let z ≤ x , y. Then pe(z) ≤ pe(x) and pe′ (z) ≤ pe′ (y), that is, z =
pe(z) + pe′ (z) ≤ pe(x) + pe′ (y) = v , that is, v = x ∧ y.

Claim 2. w := pe(y) + pe′ (x) ∈ E and w = x ∨ y. Since pe(y) ∧ pe′ (x) = 0,
then w := pe(y) + pe′ (x) ∈ E . We conclude now x ∨ y = w . We have x = pe(x)
+ pe′ (x) ≤ pe(y) + pe′ (x) = w and y = pe(y) + pe′ (y) ≤ pe(y) + pe′ (x) = w .
If now z ≥ x , y, then pe(z) ≥ pe(y) and pe′ (z) ≥ pe′ (x) that is, z = pe(z) +
pe′ (z) ≥ w .

Claim 3. x \ (x ∧ y) = (x ∨ y) \ y and y \ (x ∧ y) = (x ∨ y) \ x .
Calculate

pe(x \ (x ∧ y)) = pe(x \ (pe(x) + pe′ (y))) = pe(x) \ pe(x) = 0,

pe′ (x \ (x ∧ y)) = pe′ (x) \ pe′ (y),

pe(y \ (x ∧ y)) = pe(y) \ pe(x),

pe′ (y \ (x ∧ y)) = pe′ (y) \ pe′ (y) = 0,

pe((x ∨ y) \ x) = pe((pe(y) + pe′ (x)) \ x) = pe(y) \ pe(x),

pe′ ((x ∨ y) \ x) = pe′ (x) \ pe′ (x) = 0,
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pe((x ∨ y) \ y) = pe(y) \ pe(y) = 0,

pe′ ((x ∨ y) \ y) = pe′ (x) \ pe′ (y),

which proves Claim 3.
Finally, according to Dvurečenskij and Vetterlein (2001b, Proposition 8.7),

Claim 3 is a necessary and sufficient condition to convert E into a pseudo MV-
algebra (E ; ⊕,− ,∼ , 0, 1); we define

a ⊕ b := (a∼ \ (a∼ ∧ b))−, a, b ∈ E .

In such the case, the original + and the derived one from ⊕ coincide.
According to the basic representation of pseudo MV-algebras as the intervals

in a unital �-group (Dvurečenskij, 2003), the unital po-group (G, u) is the corre-
sponding representation �-group. Applying the result of Jakubı́k (2002), we can
show that (G, u) satisfies general comparability. As a matter of particular interest,
we present the main steps of that proof. Let x , y ∈ G and put z = x ∧ y, x ′ =
x − z, y′ = y − z. Then x ′ ∧ y′ = 0. If we denote x0 = x ′ ∧ u and y0 = y′ ∧ u,
then x0 ∧ y0 = 0. There exists an integer n such that x ′ ∨ y′ ≤ nu. The Riesz inter-
polation property holding in G implies that there exist x1, . . . , xn , y1, . . . , yn ∈ E
such that x ′ = x1 + · · · + xn and y′ = y1 + · · · + yn . In view of general compara-
bility holding in E , there exists e ∈ C(E) such that pe(x0) ≤ pe(y0) and pe′ (x0) ≥
pe′ (y0). Therefore, p̂e(x0) ≤ p̂e(y0) and p̂e′ (x0) ≥ p̂e′ (y0). Consequently, p̂e(x0) ∧
p̂e(y0) = 0 and p̂e(x0) ∧ p̂e(y0) = 0. This implies p̂e(x0) = 0 = p̂e′ (y0). Since
xi ≤ x ′ and xi ≤ u which gives xi ≤ x0. Therefore, p̂e(xi ) = 0 and p̂e(x ′) = 0.
This implies p̂e(x ′) ≤ p̂e(y′).

In an analogous way, we can prove p̂e′ (x ′) ≥ p̂e′ (y′). Taking into account that
x = x ′ + z and y = y′ + z, we have p̂e(x) = p̂e(x ′) + p̂e(z) and p̂e(y) = p̂e(y′) +
p̂e(z). Finally, p̂e(x) ≤ p̂e(y) and p̂e′ (x) ≥ p̂e′ (y) which proves that (G, u) satisfies
general comparability. �

4. CENTRAL ELEMENTS OF UNITAL PO-GROUPS

An element e ∈ �(G, u) is said to central of a unital po-group (G, u) if there
exists a po-group isomorphism

fe : G → G(e) × G(e∼) (2)

such that (i) fe(e) = (e, 0), (ii) fe(u) = (e, e∼), and (iii) if fe(x) = (x1, x2), then
x = x1 + x2, x ∈ G. It is evident that if fe is a po-group homomorphism from G
onto G(e) × G(e∼) satisfying (i)–(iii), then fe is a po-group isomorphism.

Let πe and πe∼ be the projection from G(e) × G(e∼) onto G(e) and G(e∼),
respectively. Then φe : πe ◦ fe and φe∼ := πe∼ ◦ fe are po-group homomorphisms
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of G onto G(e) and G(e∼), respectively, and

x = φe(x) + φe∼ (x), x ∈ G. (3)

We denote by C(G, u) the set of all central elements of (G, u). Then 0, u ∈ C(G, u),
and C(B(H ), I ) = {0, I }.

Proposition 4.1. Let e be a central element of a unital po-group (G, u) and let
fe be the po-group isomorphism from (4.1). Then

(i) fe(e∼) = (0, e∼).
(ii) If x ∈ G(e), then fe(x) = (x , 0). In addition, φe ◦ φe = φe.

(iii) If y ∈ G(e∼), then fe(y) = (0, y). In addition, φe∼ ◦ φe∼ = φe∼ .
(iv) G(e) ∩ G(e∼) = {0}. In addition, φe ◦ φe∼ = 0 = φe∼ ◦ φe.
(v) e− = e∼.

(vi) For any x ∈ G+ such that x ≤ nu for some n ≥ 1, then

fe(x) = (x ∧ ne, x ∧ ne∼).

(vii) e ∈ C(E), where E = �(G, u).
(viii) ne ∧ ne∼ = 0 for any n ≥ 1.

(ix) If x ∈ G+ and fe(x) = (x1, x2), then x1 ∨ x2 = x and x1 ∧ x2 = 0.
(x) If fe(x) = (x1, x2), then x1 + x2 = x = x2 + x1.

(xi) If f ∈ C(G, u), then e ∧ f ∈ G and n(e ∧ f ) = ne ∧ n f for any n ≥
1.

(xii) ne′ = nu − ne for any n1.
(xiii) If 0 ≤ x ≤ nu, then x − (x ∧ ne) = (x ∨ ne) − ne = −ne + (x ∨ ne)

= (x ∧ ne′) = −(x ∧ ne) + x.

Proof:
(i) fe(e∼) = fe(−e + u) = − fe(e) + fe(u) = −(e, 0) + (e, e∼) = (0, e∼).

(ii) We recall that the element e is a strong unit in G(e). Let x ∈ G(e)+.
Then x ≤ ne for some integer n ≥ 1. Then (0, 0) ≤ fe(x) ≤ (x1, x2) ≤
fe(ne) = (ne, 0). Therefore, x2 = 0 and fe(x) = (x , 0). If now x ∈
G(e), then x = x1 − x2 where x1, x2 ∈ G(e)+. Hence, fe(x) =
fe(x1) − fe(x2) = (x1, 0) − (x2, 0) = (x , 0).

(iii) The proof is same as that of (ii).
(iv) If x ∈ G(e) ∩ G(e∼), according to (ii) and (iii), we have fe(x) = (x , 0)

= (0, x) which gives 0 = x .
(v) (e, e∼) = fe(u) = fe(e− + e) = fe(e−) + (e, 0) = (e1, e2) + (e, 0)

= (e1 + e, e2) which yields e = e1 + e and e2 = e∼. Therefore, e1 = 0
and fe(e−) = (0, e∼) which gives e− = 0 + e∼ = e∼.

(vi) By (ii) we have 0 ≤ φe(x) ≤ x and φe(x) ≤ φe(nu) = ne. If now
y ≤ x , ne, then φe(y) ≤ φe(x). Moreover, −φe(y) + y = φe∼ (y) ≤
φe∼ (ne) = 0. Hence, y ≤ φe(y) ≤ φe(x). Therefore, φe(x) = x ∧ ne.



2176 Dvurečenskij

(vii) By (vi), we have that the restriction of fe onto E is an isomorphism of
E onto [0, e] × [0, e∼].

(viii) By (i) and (vi), we have fe(ne∼) = (0, ne∼) = (ne∼ ∧ ne, ne∼) which
gives ne∼ ∧ ne = 0.

(ix) It is clear that x ≤ x1, x2. Let z ≥ x1, x2. Then x1 = φe(x1) ≤ φe(z)
and x2 = φe∼ (x2) ≤ φe∼ (z), so that x = x1 + x2 ≤ φe(z) + φe∼ (z) = z
which proves that x = x1 ∨ x2.

Let now y ≤ x1, x2. Then x1 ≤ ne and x2 ≤ ne∼ for some n ≥ 1.
By (viii), y ≤ ne, ne∼, i.e, y ≤ 0.

(x) Calculate, φe(x2 + x1) = φe(x2) + φe(x1) = φe(x1) = x1 and φe∼ (x2 +
x1)
= φe∼ (x2) + φe∼ (x1) = x2 which proves x2 + x1 = x = x1 + x2.

(xi) Since n f ≤ nu, by (vi) we have φe(n f ) = n f ∧ ne = nφe( f ) = n(e ∧
f ).

(xii) We have φe(ne′) = ne′ ∧ ne = 0, φe′ (ne′) = ne′, φe(nu − ne) = ne −
ne
= 0, φe′ (nu − ne) = ne′.

(xiii) Since x = x ∧ ne′ + x ∧ ne, then x − (x ∧ ne) = x ∧ ne′ = x +
(−x ∨ −ne) = (x − x) ∨ (x − ne) = 0 ∨ (x − ne) = (x − ne) ∨ (ne −
ne) = (x ∨ ne) − ne. �

In view of (v) of Proposition 2, if e ∈ C(G, u), then we will write

e′ := e− = e∼.

Theorem 4.3. Let (G, u) be a unital po-group. If e, f ∈ C(G, u), then e ∧
f ∈ E and e ∧ f ∈ C(G, u), and C(G, u) = (C(G, u); ∧, ∨, ′ , 0, u) is a Boolean
algebra.

Proof: It is evident that 0, u ∈ C(G, u).
Let now e ∈ C(G, u). Then e∼ = e− and since the mapping fe is a po-group

isomorphism of G onto G(e) × G(e∼), by (ix) of Proposition 2, we have that the
mapping x �→ (x2, x1) whenever fe(x) = (x1, x2) is a po-group isomorphism of G
onto G(e∼) × G(e), and it corresponds to fe∼ . Hence, e′ ∈ C(G, u).

Let e, f ∈ C(G, u).

Claim 1. ne ∧ n f ′ + ne′ ∧ n f + ne′ ∧ n f ′ = ne′ ∨ n f ′ = n(e′ ∨ f ′) for any
n ≥ 1.

It is easy to verify that (ne ∧ n f )∼ = ne′ ∨ n f ′ = (ne ∧ n f )−. We have nu =
ne + ne′ = ne ∧ n f + ne ∧ n f ′ + ne′ ∧ n f + ne′ ∧ n f ′. Then ne ∧ n f ′ + ne′ =
ne ∧ n f ′ + ne′ ∧ n f + ne′ ∧ n f ′ = ne ∧ n f ′ + ne′ ∧ n f ′ + ne′ ∧ n f = n f ′ +
ne′ ∧ n f ≥ ne′ ∨ n f ′.
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Let y ≥ ne′, n f ′. Then 0 ≤ y ≤ mu for some integer m ≥ n and y ∧ me′ ≥
me′ ≥ ne′ and y ∧ me ≥ me ∧ m f ′ ≥ ne ∧ n f ′ which gives y = y ∧ me + y ∧
me′ = ne′ + ne ∧ n f ′.

Calculate, φe(n(e′ ∨ f ′)) = nφe(e ∧ f ′ + e′ ∧ f + e′ ∧ f ′) = n(e ∧ f ′) and
φe′ (n(e′ ∨ f ′)) = n(e′ ∧ f ) + n(e′ ∧ f ′) which gives n(e′ ∨ f ′) = ne′ ∨ n f ′.

This proves Claim.

Claim 2. C(G, u) is a lattice.
Assume x ∈ G+, x ≤ nu. By (xi) of Proposition 2,

x = x ∧ ne + x ∧ ne′

= x ∧ ne ∧ n f + x ∧ ne ∧ n f ′ + x ∧ ne′ ∧ n f + x ∧ ne′ ∧ n f ′

= x ∧ n(e ∧ f ) + x ∧ n(e ∧ f ′) + x ∧ n(e′ ∧ f ) + x ∧ n(e′ ∧ f ′).

Therefore, x ∧ n(e ∧ f ) ∈ G(e ∧ f ) and x ∧ n(e ∧ f ′) + x ∧ n(e′ ∧ f ) +
x ∧ n(e′ ∧ f ′) ∈ G((e ∧ f )′) and the mapping fe∧ f : G+ → G(e ∧ f )+ ×
G((e ∧ f )′)+ defined by fe∧ f (x) = (x ∧ n(e ∧ f ), x ∧ n(e ∧ f ′) + x ∧
n(e′ ∧ f ) + x ∧ n(e′ ∧ f ′)), 0 ≤ x ≤ nu, is a well-defined mapping which is in-
jective, and if fe∧ f (x) = (x1, x2) then x = x1 + x2; fe∧ f (e ∧ f ) = (e ∧ f, 0) and
fe∧ f (u) = (e ∧ f, (e ∧ f )′).

In addition, fe∧ f is surjective and it preserves + in G+.
If now x ∈ G, then x = x1 − x2 = −y1 + y2, where x1, x2, y1, y2 ∈ G. Then

y1 + x1 = y2 + x2 which shows that fe∧ f can be extended to a po-group ho-
momorphism denoted also by fe∧ f : G → G(e ∧ f ) × G((e ∧ f )′) which is a
po-isomorphism in question. This proves e ∧ f ∈ C(G, u). Therefore, we have
proved Claim 2.

Claim 3. For 0 ≤ x ≤ nu, x ∧ ne = 0 if and only if x ≤ ne′.
Let x ∧ ne = 0. Then x = x ∧ ne + x ∧ ne′ = x ∧ ne′ which gives x ≤ ne′.

Conversely, if x ≤ ne′, then x = x ∧ ne + x ∧ ne′ = x ∧ ne + x , i.e., x ∧ ne = 0.

Claim 4. If e ∧ f = 0, then e + f = e ∨ f = f + e.
If e ∧ f = 0, then by Claim 3, e + f ∈ E and f + e ∈ E , and e + f ≥

e ∨ f ≤ f + e. Hence, φe∨ f (e + f ) = φe∨ f (e) + φe∨ f ( f ) = e + f ≤ e ∨ f . In
an analogous way f + e ≤ e ∨ f .

Claim 5. If e ∧ f = 0 and x ∈ G+, then φe∨ f (x) = φe(x) + φ f (x) = φ f (x) +
φe(x) and

x ∧ (ne ∨ n f ) = x ∧ ne + x ∧ n f = (x ∧ ne) ∨ (x ∧ n f ).

Let 0 ≤ x ∈ nu. Then pe∨ f (x) = x ∧ n(e ∨ f ) and pe′∧ f ′ (x) = x ∧ n(e′ ∧
f ′). Since x = x ∧ ne ∧ n f + x ∧ ne ∧ n f ′ + x ∧ ne′ ∧ n f + x ∧ ne′ ∧ n f ′ =
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x ∧ ne + x ∧ n f + pn(e∨ f )′ (x), so that pe∨ f (x) = x ∧ ne + x ∧ n f . If now z ≥
x ∧ e, x ∧ f , then 0 ≤ z ≤ mu for some integer m ≥ n, and

z = z ∧ me ∧ m f + z ∧ me ∧ m f ′ + z ∧ me′ ∧ m f + z ∧ me′ ∧ m f ′ ≥ z ∧
me + z ∧ m f ≥ x ∧ me + x ∧ m f = x ∧ ne + x ∧ n f , which proves

x ∧ (ne ∨ n f ) = (x ∧ ne) + (x ∧ n f ) = (x ∧ ne) ∨ (x ∧ n f ).

Claim 6. If e ∧ f = 0, 0 ≤ x ≤ ne and 0 ≤ y ≤ n f , then x + y = y + x = x ∨
y.

It is clear that x + y ≥ x , y. Suppose z ≥ x , y. There exists an integer m ≥
n such that 0 ≤ z ≤ mu. By Claim 5, we have z ≥ φe∨ f (z) = φe(z) + φ f (z) =
z ∧ me + z ∧ m f ≥ x ∧ me + y ∧ m f = x ∧ ne + y ∧ n f = x + y. In a similar
way, we prove y + x = x ∨ y.

Claim 7. If e ≤ f , then e\ f = f ∧ e′ = f e, and φe∧ f ′ (x) = φe(x) − φ f (x)
= −φ f (x) + φe(x), x ∈ G+.

Since e = f ∨ e ∧ f ′ = f + e ∧ f ′, Claim 4 yields Claim 6.

Claim 8. If 0 ≤ x ≤ nu, then

x ∧ (ne ∨ n f ) = (x ∧ ne) ∨ (x ∧ n f ).

Set e1 = e ∧ f ′, e2 = e ∧ f and e3 = e′ ∧ f . By induction and Claims 5 and
6, we have x ∧ (ne ∨ n f ) = x ∧ (ne1 ∨ ne2 ∨ ne3) = (x ∧ ne1) ∨ (x ∧ ne2) ∨
(x ∧ ne3) = ((x ∧ ne1) ∨ (x ∧ ne2)) ∨ ((x ∧ ne2) ∨ (x ∧ ne3)) = x ∧ (ne1 ∨
ne2) ∨ x ∧ (ne2 ∨ ne3) = (x ∧ ne) ∨ (x ∧ n f ).

Claim 9. C(G, u) is a Boolean algebra.
By Claim 2, C(G, u) is a lattice. Let e, f, g ∈ C(G, u). If we set x = g, from

Claim 8 we conclude g ∧ (e ∨ f ) = (g ∧ e) ∨ (g ∧ f ). Passing to ′, we have the
second distributivity law. �

From the Proof of Theorem 4.2 we have that if e, f ∈ C(G, u), then

φe∧ f = φe ◦ φ f = φ f ◦ φe.

In the following result we characterize central elements of (G, u) satisfying
(RDP). We note that if E satisfies (RDP0) and a ∧ b = 0 for a, b ∈ E , then a +
b, b + a, a ∨ b ∈ E , and a ∨ b = a + b = b + a.

Corollary 4.1. Let (G, u) be a unigroup with generative u and let E = �(G, u).
Then C(E) = C(G, u).
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Proof: If e is a central element of (G, u), then evidently e is a central element
for E .

Conversely, let e be a central element for E . According to (vi) of Proposition 1,
e is a central element also for (G, u). �

Theorem 4.4. Let a unital po-group (G, u) satisfy (RDP). Then e ∈ E = �(G, u)
is central if and only if e ∧ e∼ = 0 if and only if e ∧ e− = 0.

Proof: Let e ∈ C(G, u), then e ∧ e∼ = 0 = e ∧ e−. In view of (viii) of Propo-
sition 2, e ∧ e∼ = 0 if and only if e ∧ e− = 0.

Conversely, let e ∧ e∼ = 0. Then x ≤ 1 = e + e∼ for any x ∈ E . There are
x1 ≤ e and x2 ≤ e∼ such that x = x1 + x2. We show that if y1 ≤ e and y2 ≤ e∼

and x = y1 + y2, then x1 = y1 and x2 = y2. Due to (RDP), there are four elements
c11, c12, c21, c22 ∈ E such that x1 = c11 + c12, x2 = c21 + c22, y1 = c11 + c21 and
y2 = c12 + c22. Since c12 ≤ x1 ≤ e and c12 ≤ y2 ≤ e∼, we conclude c12 = 0. Sim-
ilarly, c21 = 0. Hence, x1 = c11 = y1 and x2 = c22 = y2.

Define the mapping pe : E → [0, e] by pe(x) = x1 if x = x1 + x2 (x ∈ E).
If x1 ∈ [0, e] and x2 ∈ [0, e∼], then x1 ∧ x2 = 0, so that by the earlier note, x =
x1 + x2 = x2 + x1 = x1 ∨ x2, and hence pe(x) = x1. Consequently, pe restricted
to [0, e] is the identity.

We show that pe is a homomorphism of pseudo-effect algebras. Let x + y ∈ E
and x = x1 + x2 and y = y1 + y2, where x1, y1 ≤ e, x2, y2 ≤ e∼. Then x + y =
x1 + x2 + y1 + y2. Since x2 ∧ y1 = 0, then x + y = x1 + y1 + x2 + y2. On the
other hand, let x + y = z1 + z2, where z1 ≤ e and z2 ≤ e∼. Hence, there are four
elements d11, d12, d21, d22 such that

x1 + y1 = d11 + d12,

x2 + y2 = d21 + d22,

z1 = d11 + d21,

z2 = d12 + d22.

We claim d12 = 0. Since d12 ≤ x1 + y1, then d12 = d ′ + d ′′, where d ′ ≤ x1

and d ′′ ≤ y1. Then d ′ ≤ x1 ≤ e and d ′ ≤ d12 ≤ z2 ≤ e∼ so that d ′ = 0, and d ′′ ≤
y1 ≤ e and d ′′ ≤ z2 ≤ e∼ proving d ′′ = 0 and therefore d12 = 0. In a similar way,
we can prove d21 = 0 which yields x1 + y1 = z1 and x2 + y2 = z2, so that, pe is
a homomorphism.

By the earlier note, we have e∼ = e−. Therefore, we can write e′ := e∼ = e−,
and let pe′ (x) = x2 if x = x1 + x2 (x ∈ E). Then pe′ is a homomorphism from E
onto [0, e′].

Consequently, the mapping fe : E → [0, e] × [0, e′] defined by fe(x) =
(pe(x), pe′ (x)), x ∈ E , is an isomorphism of pseudo-effect algebras with
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fe(e) = (e, 0), so that e ∈ C(E). Since (G, u) satisfy (RDP), (G, u) is a unigroup
with generative u, by Corollary 1, e ∈ C(G, u). �

We say that a po-group G is Dedekind monotone σ -complete if any sequence
x1 ≤ x2 ≤ · · · in G which has an upper bound, x ∈ G, has a supremum

∨∞
n=1 xn

in G. We recall that a Dedekind monotone po-group is not necessarily a lattice
(Goodearl, 1986, Examples 16.1 and 16.8), or the unital po-group B(H ) which is
an antilattice (Luxemburg and Zaanen, 1971).

Another example, let G = Z
2 with the strict ordering ≤, that is, (m1, n1) ≤

(m2, n2) iff either m1 < m2 and n1 < n2 or (m1, n1) = (m2, n2). Then (G, u),
where u = (1, 1), is a unital po-group which not an interpolation group. (G, u) is
Dedekind monotone σ -complete (all bounded ascending or descending sequences
from Z

2 are eventually constant).

Theorem 4.5. Let a unital po-group (G, u) be Dedekind monotone σ -complete
such that if 0 ∈ G+ is the infimum of two elements, x and y, from G+, then 0 is the
infimum of x and y also in G. Let e = ∨∞

i=1 ei ∈ G, where ei ∈ C(G, u), i ≥ 1.
Then e ∈ C(G, u), and for any n ≥ 1 and any 0 ≤ x ≤ nu

x ∧
( ∞∨

i=1

nei

)
=

∞∨
i=1

(x ∧ nei ). (4)

Proof: Since by Theorem 4.2, C(G, u) is a Boolean algebra, without loss of
generality, we can assume e1 ≤ e2 ≤ · · ·. Therefore, e ∈ G. We recall that we also
have e∼ = e− =: e′.

In addition, x ∧ ei ∈ E , which entails

x0 :=
∨

i

(x ∧ nei )

is defined in G, and x0 ≤ x , e.

Claim 1. ne = ∨
i nei for any n ≥ 1.

Indeed, for simplicity assume n = 2. Then e + e = (∨∞
i=1 ei

) + e = ∨∞
i=1

(ei + e) = ∨∞
i=1

∨∞
j=1(ei + e j ) = ∨∞

i=1 2ei .
Assume that x∗

0 is any element of G such that x ∧ nei ≤ x∗
0 ≤ x , ne for any

i ; such an element always exists, e.g., x0.

Claim 2.
∧

i (x − (x ∧ nei )) = x − x∗
0 = −x∗

0 + x .
It is evident that x − (x ∧ nei ) ≥ x − x∗

0 for every i . Let d ≤ x − (x ∧ nei )
for each i . By (xiii) of Proposition 2, d ≤ x − (x ∧ nei ) = (x ∨ nei ) − nei . Then
d + nei ≤ x ∨ nei ≤ x − x∗

0 + ne and nei ≤ −d + x − x∗
0 + ne which gives

ne ≤ −d + x − x∗
0 + ne which gives d ≤ x − x∗

0 .
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Claim 3. x0 = ∨
i (x ∧ nei ) = x∗

0 .
From Claim 2, we have

∧
i (x − (x ∧ nei )) = x − ∨

i (x ∧ nei ) = x − x∗
0 ,

that is,
∨

i (x ∧ nei ) = x∗
0 .

Claim 4. (x − x∗
0 ) ∧ (ne − x∗

0 ) = 0.
Assume 0 ≤ z ≤ x − x∗

0 and z ≤ ne − x∗
0 . Then z + x∗

0 ≤ x , z + x∗
0 ≤ ne,

and x ∧ nei ≤ z + x∗
0 ≤ ne, x for each i . Using Claim 3, we have x∗

0 = z + x∗
0 ,

that is, z = 0.

Claim 5. ne ∧ ne′ = 0 for any n ≥ 1.
Assume 0 ≤ z ≤ ne, ne′. For z0 := ∨

i (z ∧ nei ) we have z0 ≤ z ≤ ne, ne′

and z ∧ nei ≤ z0 ≤ ne′ ≤ ne′
i which gives z ∧ nei = 0 for any i , i.e., z0 = 0. Then

z − z0 ≤ ne − z0 and by Claim 3, we have z − z0 = (z − z0) ∧ (ne − z0) = prov-
ing z = 0.

Define two mappings qe : G+ → G(e)+ and qe′ : G+ → G(e′)+ by

qe(x) :=
∨

i

(x ∧ nei ) =: x0,

qe′ (x) := x − x0

for any 0 ≤ x ≤ nu. qe is well defined, while if 0 ≤ x ≤ nu and x ≤ mu, then
x ∧ nei = x ∧ mei for any i . By Claims 2–3, we have qe′ (x) = x − x0 = −x0 +
x = ∧

i (x ∧ ne′
i ) ∈ G(e′)+.

Then qe(e) = e and qe′ (e) = 0.

Claim 6. If x , y ∈ G+ such that x + y ≤ nu, then qe(x + y) = qe(x) + qe(y).
Calculate, qe(x + y) = ∨

i ((x + y) ∧ nei ) = ∨
i (x ∧ nei + y ∧ nei ) ≤

qe(x) + qe(y) ∈ G(e)+.
Assume (x + y) ∧ nei ≤ z for any i , and fix an integer i0 ≥ 1. Then x0, y0 ≤ z

and x ∧ nei + y ∧ ei0 ≤ z for any i ≥ i0. Hence, x ∧ nei ≤ z − (y ∧ nei0 ), that
is, x0 ≤ z − (x ∧ nei0 ) and y ∧ nei0 ≤ −x0 + z which gives y0 ≤ −x0 + z and
x0 + y0 ≤ z.

Claim 7. If x , y ∈ G+ such that x + y ≤ nu, then qe′ (x + y) ≥ qe′ (x) + qe′ (y).
Indeed, qe′ (x + y) = ∧

i ((x + y) ∧ ne′
i ) = ∧

i (x ∧ ne′
i + y ∧ ne′

i ) ≥ x ∧ e′

+ y ∧ e′ ∈ G+.

Claim 8. If 0 ≤ x ≤ ne, 0 ≤ y ≤ ne′, then qe(x) = x and qe′ (y) = y.
Calculate, qe(x) = x0 and qe′ (x) = x − x0 ≤ e, e′ which by Claim 5 means

x − x0 = 0. Similarly we prove qe′ (y) = y.

Claim 9. If 0 ≤ x ≤ ne and 0 ≤ y ≤ ne′, then x + y = x ∨ y = y + x .
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Assume z ≥ x , y. Then qe(z) ≥ qe(x) = x and qe′ (z) ≥ qe′ (y) = y which
gives z = qe(z) + qe′ (z) ≥ x + y, that is, x + y = x ∨ y.

We assert that qe′ (x + y) = y. Indeed, x + y = qe(x + y) + qe′ (x + y) ≥
qe(x) + qe(y) + qe′ (x) + qe′ (y) = x + y.

Assume now x + y = y + d for some d ∈ G+. Then x = qe(x + y) =
qe(y + d) = qe(d) and y = qe′ (x + y) = qe′ (y + d) ≥ y + qe′ (d) which implies
x + y = y + d ≥ y + qe(d) = y + x . But y + x ≥ x , y, then y + x ≥ x ∨ y =
x + y.

Claim 10. If x , y ∈ G+ and x + y ≤ nu, then qe′ (x + y) = qe′ (x) + qe′ (y).
Calculate and use Claim 9, x + y = qe(x + y) + qe′ (x + y) ≥ qe(x)

+ qe(y) + qe′ (x) + qe′ (y) = qe(x) + qe′ (x) + qe(y) + qe′ (y) = x + y.

Claim 11. If fe : G+ → G(e)+ × G(e′)+ is defined by

fe(x) = (qe(x), qe′ (x)), x ∈ G,

then fe is a +-preserving injective mapping onto G(e) × G(e′).
Indeed, fe(e) = (e, 0), and if fe(x) = (x1, x2), then x = x1 + x2, and by

Claims 8 and 10, fe is an injective mapping preserving +. Assume 0 ≤ x ≤ ne
and 0 ≤ y ≤ ne′, then x + y ≤ nu and fe(x + y) = (x , y).

As in the Proof of Theorem 4.2, we can extend fe to a mapping from G
to G(e) × G(e′) which is also denoted by fe. It is possible to show that fe is a
po-group isomorphism, which proves that e is a central element of (G, u).

Therefore, x ∧ ne ∈ E , so that x ∧ ne = x0 which proves (4.3). �

It is worth noting that the statement, “if for x , y ∈ G+ the infimum in G+ is
0, then the infimum of x , y taken is the whole G is also 0,” is equivalent with the
statement “the infimum of a, b ∈ G+ is the same as the infimum of a, b taken in G.”

We recall that if (G, u) is an �-group, then infimum of two positive elements
taken in G+ is the same as that taken in the whole G. In this particular case,
if in addition, G is Dedekind monotone σ -complete, then G is a Dedekind σ -
complete �-group. In a similar way, if (G, u) satisfies (RDP1), then infimas taken
in E = �(G, u) are preserved also in G ((Dvurečenskij and Vetterlein, 2001b,
Proposition 6.3).

5. GENERAL COMPARABILITY AND STATES
ON UNITAL PO-GROUPS

Now we extend the notion of general comparability also for unital po-groups.
We say that a unital po-group (G, u) satisfies general comparability if, given

x , y ∈ G, there is a central element e ∈ C(G, u) such that φe(x) ≤ φe(y) and
φe′ (x) ≥ φe′ (y).
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The following result extends the result holding for Abelian unital groups with
interpolation (Goodearl, 1986, Proposition 8.9), as well as that for Abelian unital
compressible unital po-groups not necessarily with interpolation (Foulis, preprint,
Theorem 4.9).

Theorem 5.1. Let a unital po-group (G, u) satisfy general comparability. Then
G is an �-group.

Proof: Given x , y ∈ G, there exists e ∈ C(G, u) such that φe(x) ≤ φe(y) and
φe′ (x) ≥ φe′ (y). Set v = φe(x) + φe′ (y). Then v ≤ φe(y) + φe′ (y) = y and
similarly v ≤ x .

If now z ≤ x , y, then φe(z) ≤ φe(x) and φe′ (z) ≥ φe′ (y) whence z = φe(z) +
φe′ (z) ≤ φe(x) + φe′ (y) = v which proves v = x ∧ y.

In a similar way, we can prove that if w := φe(y) + φe′ (x), then w =
x ∨ y. �

Comparing Theorems 1 and 3, we see that if a unital po-group (G, u) satisfies
general comparability, then it is a unigroup which is an �-group. In addition,
if (G, u) is a Dedekind σ -complete �-group, then (G, u) is commutative and it
satisfies general comparability (Goodearl, 1986, Theorem 9.9). This and Theorem 1
prove the following corollary.

Corollary 5.2. Let (G, u) satisfy general comparability. Then C(G, u) = C(E),
where E = �(G, u).

We recall that a state on a unital po-group (G, u) is any mapping ŝ : G → R

such that (i) ŝ(g) ≥ for any g ∈ G+, (ii) ŝ(g + h) = ŝ(g) + ŝ(h) for all g, h ∈ G,
and (iii) ŝ(u) = 1. It is well known that if (G, u) is an Abelian group, then (G, u)
admits a state (Goodearl, 1986, Corollary 4.4) whenever u > 0. In contrast that,
for non-commutative unital po-groups this is not always the case, as it was shown
in (Dvurečenskij, 2001), or see the following example.

We apply similar notations as in (Glass, 1999). Let R be the set of all real
numbers with the natural linear order. We denote by A(R) the set of all order-
preserving permutations of R. Then A(R) is a group under composition. For f, g ∈
A(R) we put f ≤ g if f (t) ≤ g(t) for each t ∈ R. The relation ≤ is a partial order
on A(R) and under this partial order, A(R) turns out to be a lattice ordered group.

Example 5.3. Let a ∈ A(R), a(t) ≥ t for any t ∈ R, and a(t0) > t0 for some
t0 ∈ R. Then (Ga , a) is a stateless unital �-group, where Ga denotes the convex
�-subgroup of A(R) generated by the element a. In addition, general comparability
fails to hold in M (see Theorem 4).
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In what follows we show that if (G, u) satisfies general comparability, then it
admits a state.

Theorem 5.4. Every unital po-group satisfying general comparability admits a
state.

Proof: Let (G, u) be a unital po-group satisfying general comparability. Ac-
cording to Theorem 4, G is an �-group and E = �(G, u) is a pseudo MV-algebra
such that C(E) = C(G, u) and E satisfies general comparability. Applying
(Dvurečenskij; Cor 4.5], E admits a state, s. Since (G, u) is a unigroup, s can
be extended to a state, ŝ, on (G, u). �

In what follows we show that if (G, u) satisfies general comparability, then
G is representable, that is, it is a subdirect product of linearly ordered unital
po-groups.

Let {(Mt ; ⊕t ,−t ,∼t , 0t , 1t )}t∈T be a family of pseudo MV-algebras. The
Cartesian product M := ∏

t∈T Mt , where ⊕,− ,∼ , 0, 1 are defined in a usual way
by coordinates, is said to be a direct product of {(Mt ; ⊕t ,−t ,∼t , 0t , 1t )}t∈T . Then
M is a pseudo MV-algebra. A pseudo MV-algebra M is a subdirect product of
a family of {(Mt ; ⊕t ,−t ,∼t , 0t , 1t )}t∈T of pseudo MV-algebras iff there exists a
one-to-one homomorphism h : M → ∏

t∈T Mt of pseudo MV-algebras such that,
for each t ∈ T , πt ◦ h is a homomorphism of pseudo MV-algebras from M onto
Mt , where πt is the t-th projection

∏
t∈T Mt onto Mt .

According to (Georgescu and Iorgulescu, 2001), we say that a pseudo MV-
algebra M is representable if it can be represented as a subdirect product of linear
pseudo MV-algebras. It is well known that every MV-algebra is representable (see
e.g., Cignoli et al., 2002).

An �-group G is representable iff it is a subdirect product of linearly ordered
�-groups, or equivalently (Darnel, 1995, Proposition 47.1(c)), iff there exists a
system of �-ideals, {Lt : t ∈ T }, of G such that

⋂
t∈T Lt = {0}.

Theorem 5.5. Every unital po-group satisfying general comparability is a
representable as a subdirect product of linearly ordered unital po-groups.

Proof: Let (G, u) be a unital po-group satisfying general comparability. Then
(G, u) is an �-group, and E = �(G, u) is a pseudo MV-algebra with general com-
parability. According to (Dvurečenskij) Thm 6.2], E is representable, and this
is possible iff G is representable, see (Dvurečenskij, 2001). If E is a subdirect
product of a system of linearly ordered pseudo MV-algebras, {Ei }, then accord-
ing to basic representation of pseudo MV-algebras (Dvurečenskij, 2003), every
Ei = �(G, ui ), where (Gi , ui ) is a linearly ordered unital �-group. Hence, G is a
subdirect product of {Gi }. �
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Dvurečenskij, A. and Pulmannová, S. (2000). New Trends in Quantum Structures, Kluwer Academic

Publishers, Dordrecht, Ister Science, Bratislava.
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